

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR20011183 Volume 11, Issue 1, January-June 2020 1

Optimizing Database Interaction Using

Repository and Unit of Work Patterns

Sadhana Paladugu

Senior Software developer

sadhana.paladugu@gmail.com

Introduction

Efficient database interaction is crucial for building performant and scalable applications. Poorly

managed database operations can lead to redundant queries, high latency, and data inconsistencies. The

Repository and Unit of Work patterns provide structured approaches to manage database interactions,

ensuring consistency, reducing coupling, and improving testability. This paper explores how these

patterns work, their implementation, and their impact on optimizing database interactions.

Overview of Repository and Unit of Work Patterns

1. Repository Pattern The Repository pattern acts as a mediator between the domain and data

mapping layers. It abstracts the logic required to access the database, providing a consistent

interface for CRUD (Create, Read, Update, Delete) operations.

◦ Purpose: Encapsulates database access logic to reduce dependency on specific database

technologies or ORM frameworks.

◦ Implementation: A UserRepository class, for instance, can provide methods like

getById, getAll, and add to interact with the User table.

2. Unit of Work Pattern The Unit of Work pattern ensures that a set of changes to the database is

performed as a single transaction. It tracks changes (inserts, updates, deletes) to objects during a

business transaction and ensures atomicity.

◦ Purpose: Manages database transactions to prevent partial updates and ensure

consistency.

◦ Implementation: A UnitOfWork class tracks changes to repositories and commits them

in a single transaction.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR20011183 Volume 11, Issue 1, January-June 2020 2

Benefits of Combining Repository and Unit of Work Patterns

1. Improved Testability

◦ By abstracting database operations, these patterns enable dependency injection, allowing

developers to mock repositories for unit testing.

2. Reduced Coupling

◦ Application layers are decoupled from database frameworks or technologies, making it

easier to switch databases or ORM frameworks.

3. Consistency and Atomicity

◦ The Unit of Work ensures that changes are committed together, preventing issues caused

by partial updates.

4. Code Reusability

◦ Repository classes centralize database logic, reducing duplication across the application.

Practical Implementation

Defining the Repository Interface

1. public interface IRepository<T> where T : class {

2. T GetById(int id);

3. IEnumerable<T> GetAll();

4. void Add(T entity);

5. void Update(T entity);

6. void Delete(T entity);

7. }

8. Implementing the Repository

9. public class UserRepository : IRepository<User> {

10. private readonly AppDbContext _context;

11.

12. public UserRepository(AppDbContext context) {

13. _context = context;

14. }

15.

16. public User GetById(int id) => _context.Users.Find(id);

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR20011183 Volume 11, Issue 1, January-June 2020 3

17.

18. public IEnumerable<User> GetAll() => _context.Users.ToList();

19.

20. public void Add(User entity) => _context.Users.Add(entity);

21.

22. public void Update(User entity) => _context.Users.Update(entity);

23.

24. public void Delete(User entity) => _context.Users.Remove(entity);

25. }

26. Defining the Unit of Work Interface

27. public interface IUnitOfWork {

28. IUserRepository Users { get; }

29. void Commit();

30. }

31. Defining the Unit of Work Interface

32. public class UnitOfWork : IUnitOfWork {

33. private readonly AppDbContext _context;

34.

35. public IUserRepository Users { get; }

36.

37. public UnitOfWork(AppDbContext context, IUserRepository userRepository) {

38. _context = context;

39. Users = userRepository;

40. }

41.

42. public void Commit() => _context.SaveChanges();

43. }

44. Using the Patterns in Application Logic

45. public class UserService {

46. private readonly IUnitOfWork _unitOfWork;

47.

48. public UserService(IUnitOfWork unitOfWork) {

49. _unitOfWork = unitOfWork;

50. }

51.

52. public void RegisterUser(User user) {

53. _unitOfWork.Users.Add(user);

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR20011183 Volume 11, Issue 1, January-June 2020 4

54. _unitOfWork.Commit();

55. }

56. }

Challenges and Solutions

1. Performance Overhead

◦ The additional abstraction layers may introduce performance overhead. Mitigate this by

profiling and optimizing critical paths.

2. Complexity in Implementation

◦ Setting up these patterns requires additional classes and interfaces. This can be

streamlined by using code generation tools or frameworks that support these patterns

natively.

3. Concurrency Issues

◦ Concurrent transactions can cause conflicts. Use database locking mechanisms or

optimistic concurrency controls to handle such cases.

Conclusion

The Repository and Unit of Work patterns provide a robust framework for managing database

interactions in a scalable and maintainable way. By abstracting database logic and ensuring atomic

transactions, these patterns simplify development and improve application reliability. While they

introduce some complexity, the benefits in terms of testability, consistency, and reusability make them

essential tools for modern software development.

References

1. Fowler, M. (2003). "Patterns of Enterprise Application Architecture." Addison-Wesley.

2. Evans, E. (2003). "Domain-Driven Design: Tackling Complexity in the Heart of Software."

Addison-Wesley.

3. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). "Design Patterns: Elements of Reusable

Object-Oriented Software." Addison-Wesley.

4. Larman, C. (2002). "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development." Prentice Hall.

5. Subramanian, S. (2014). "Object-Oriented Design with UML and Java." Springer.

6. Microsoft Docs. (2018). "Repository and Unit of Work Pattern in ASP.NET Core." Retrieved from

https://docs.microsoft.com/

https://www.ijaidr.com/

