

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 1

Container Security: Best Practices for Scanning

Docker Images

Pradeep Bhosale

Senior Software Engineer Independent Researcher

Abstract

As containerized applications become the cornerstone of modern software deployments, ensuring

the security of container images has become a critical priority. Docker images, representing layered

filesystems and application dependencies, can inadvertently carry known vulnerabilities,

misconfigurations, or even malicious code. Without proactive scanning and remediation, these

hidden risks can propagate into production environments, exposing organizations to breaches,

regulatory violations, and reputational harm. Integrating container image scanning into the build

and deployment pipeline is thus essential to achieving robust container security.

This paper provides a comprehensive overview of best practices for scanning Docker images,

exploring state-of-the-art tools, workflows, and standards. We examine the container security

ecosystem, detailing how vulnerability scanning, configuration checks, and policy enforcement fit

into DevSecOps workflows. By illustrating architectural patterns, comparing scanning tools, and

presenting code examples, we guide practitioners in selecting appropriate scanners, automating

scans in CI/CD pipelines, and managing vulnerability triage. We also discuss emerging challenges

like supply chain attacks, the rise of minimal base images, and the adoption of container image

signing and verification. Ultimately, by understanding and applying these best practices,

organizations can confidently adopt containers at scale, ensuring that only secure, compliant images

reach production.

Keywords: Container Security, Docker Image Scanning, DevSecOps, Vulnerability Management,

Container Registry, Supply Chain Security, CI/CD Integration

1. Introduction

Containers have revolutionized how software is packaged and delivered. By encapsulating applications

and dependencies into portable, immutable images, containers enable consistent deployments across

environments and accelerate DevOps workflows. Docker, one of the most popular container platforms,

has fueled this transformation [1]. However, this convenience does not come without security risks.

Insecure base images, unpatched vulnerabilities in packaged libraries, hardcoded secrets, and

misconfigured file permissions within images can all create exploitable attack surfaces [2].

To mitigate these risks, security-conscious organizations integrate automated scanning tools that inspect

Docker images for known vulnerabilities, insecure configurations, and compliance violations before

images reach production [3]. This “shift-left” approach identifies issues early, reduces remediation costs,

and ensures a more secure supply chain.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 2

This paper offers a comprehensive guide to best practices for scanning Docker images. We begin by

analyzing the container threat landscape, then detail how vulnerability scanning and configuration checks

integrate into CI/CD pipelines. We review prominent scanning tools, including open-source and

commercial solutions, and present architectural patterns for embedding scanning at multiple stages.

Through diagrams, tables, and real-world case studies, we illustrate effective vulnerability management

workflows and highlight strategies to handle emerging challenges like supply chain attacks and minimal

base images [4]. Ultimately, these best practices empower teams to confidently adopt containers without

compromising security.

2. Understanding Container Image Security Risks

2.1 The Container Threat Landscape

Containers bundle application code and dependencies into layered images. Each layer may introduce

vulnerabilities: outdated OS packages, vulnerable libraries, or default credentials. Attackers can exploit

these weaknesses to gain unauthorized access, escalate privileges, or exfiltrate data [5]. Container images

sourced from public registries often lack guarantees of security or maintenance.

Figure 1: Attack Surface in a Container Image

Each layer potentially adds exploitable components.

2.2 Common Vulnerability Classes

● OS-Level Vulnerabilities:

○ Unpatched CVEs in base image packages (e.g., glibc, OpenSSL).

● Library-Level Issues:

○ Outdated frameworks, APIs with known bugs.

● Misconfiguration:

○ Weak file permissions, exposed SSH keys, or clear-text secrets.

● Malware or Supply Chain Attacks:

○ Compromised images intentionally embedding backdoors or cryptominers [6].

3. The Role of Image Scanning in DevSecOps

3.1 Shifting Security Left

Integrating image scanning early in the pipeline (e.g., at build time) prevents vulnerable images from

reaching registries. Rather than performing late security audits, developers receive near-instant feedback

on security issues with each commit [7].

Stage Without Scanning With Scanning Early

Build Potentially produce insecure images Fail builds on vulnerabilities

Test/QA Late discovery of issues Fewer surprise findings, stable testing

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 3

Production Vulnerabilities discovered at

runtime

Only vetted images deployed

Table 2: Benefits of Early Image Scanning

3.2 Integrating with CI/CD

Scanning tools integrate seamlessly with Jenkins, GitLab CI, GitHub Actions, or Azure Pipelines. A

typical workflow: after building an image, a scanner runs automatically. If critical vulnerabilities exceed

a threshold, the pipeline fails, ensuring policy enforcement [8].

4. Key Capabilities of Image Scanning Tools

4.1 Vulnerability Detection

Tools rely on vulnerability databases (e.g., NVD) and vendor advisories to identify known CVEs in OS

packages, libraries, and language-specific dependencies. Regular updates ensure scanners remain current

[9].

4.2 Configuration and Policy Checks

Beyond CVEs, scanners may detect insecure configurations (e.g., root user running processes), presence

of sensitive files, or compliance violations. Applying custom policies ensures that images meet internal or

regulatory standards.

4.3 Integration with Registries and Catalogs

Modern scanners can pull images from container registries (Docker Hub, ECR, GCR) and push results

back to the pipeline or a management console. Some solutions support continuous scanning: whenever a

new vulnerability emerges, previously scanned images get re-evaluated [10].

5. Choosing Scanning Tools

5.1 Open-Source vs. Commercial Solutions

Open-source tools like Trivy, Grype, or Clair provide cost-effective scanning with decent coverage.

Commercial offerings (Aqua, Twistlock, Snyk Container) add richer dashboards, policy engines, and

enterprise integration [11]. Evaluating complexity, ecosystem support, and reporting capabilities helps in

selecting the right fit.

Tool Type Integration Features

Trivy Open-source CI/CD, CLI OS & app-level vulns, easy to use

Clair Open-source Registry, CLI Static scans, needs integration

Snyk Container Commercial CI/CD, Registry Vulns, policies, actionable remediation

Aqua CSP Commercial CI/CD, runtime Policies, runtime protection, compliance

Table 3: Sample Tools Comparison

5.2 Performance and Scalability

For large-scale environments, scanning overhead matters. Efficient tools handle parallel scans and caching

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 4

results. Evaluating scan times, memory usage, and incremental scans ensures the solution scales with team

demands [12].

6. Integrating Scanning into the Pipeline

6.1 Architecture of a Secure Pipeline

Figure 4: Architecture of a Secure Pipeline

When scans fail due to critical issues, the pipeline aborts, prompting developers to fix vulnerabilities

before re-running.

6.2 Policy Enforcement and Thresholds

Define thresholds:

● Critical vulns: Block the pipeline immediately.

● High vulns: Alert and consider blocking or exception workflow.

● Medium/Low vulns: Add to backlog or track over time.

Integrate these policies into CI configs for automated decision-making [13].

6.3 Notifications and Alerts

Integrating Slack, email, or Jira tickets ensures teams respond quickly. Security dashboards or SIEM

integration (Splunk, ELK) provide historical trends and compliance reports [14].

7. Vulnerability Management and Triage

7.1 Classifying and Prioritizing Issues

Not all vulnerabilities are equal. Use CVSS scores, exploit maturity, and asset criticality to prioritize fixes.

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 5

Address critical OS vulnerabilities first, then handle medium-level library issues subsequently [15].

Figure 5: Vulnerability Prioritization Matrix

7.2 Remediation Strategies

● Update Base Images:

○ Use minimal images like Alpine or distroless to reduce attack surface.

● Patch Dependencies:

○ Regularly update packages and frameworks.

● Rewrite Configs:

○ Adjust Dockerfiles to run as non-root, remove unnecessary packages.

● Apply Security Frameworks:

○ Implement runtime security policies (e.g., AppArmor, SELinux) [16].

8. Addressing Supply Chain Attacks

8.1 Trusted Base Images

Supply chain attacks often start with compromised base images. Choose images from trusted sources,

verify signatures (e.g., Notary, Cosign), and store images in private registries [17]. Scanning ensures no

known bad actors or malicious layers slip through.

8.2 SBOM and Image Signing

Software Bill of Materials (SBOM) details components inside an image. SBOM scanning helps detect

unauthorized dependencies. Signing images with Sigstore or Docker Content Trust ensures authenticity,

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 6

preventing tampered images from infiltration [18].

9. Minimizing False Positives and Developer Friction

9.1 Tool Calibration

Tuning scanners to ignore low-severity or known benign issues reduces noise. Whitelisting certain

packages or using custom rules helps teams focus on real threats [19].

9.2 Developer Training and Documentation

Educating developers on reading scan reports and applying recommended fixes fosters a positive security

culture. Transparent reporting and stable scanning results build trust and minimize scanner fatigue [20].

10. Runtime Verification and Continuous Monitoring

10.1 Post-Deployment Validation

While image scanning is crucial pre-deployment, runtime checks reinforce security. Solutions like Falco

or Twistlock monitor container behavior for anomalies (unexpected network connections, privilege

escalations) [21]. This complements scanning, ensuring that even previously safe images remain secure

in production.

10.2 Continuous Re-scanning

As new CVEs emerge daily, re-scanning stored images in registries ensures previously “clean” images are

re-evaluated. Automated rescans triggered by CVE database updates prevent old images from hiding

newly discovered threats [22].

11. Case Studies

11.1 Financial Institution Container Hardening

A global bank integrated Trivy scans into Jenkins pipelines. High-severity vulnerabilities plummeted as

developers fixed issues before merging. Central dashboards monitored compliance with PCI-DSS. This

streamlined audits and reduced time-to-fix critical CVEs by 60% [23].

11.2 Healthcare IoT Platform

A healthcare IoT startup scanned images with Snyk Container and enforced strict policies: no critical

vulns allowed. Over six months, image sizes shrank by 30% due to minimal base images, and no critical

issues reached production. Clinical data remained secure, supporting HIPAA compliance [24].

12. Metrics and Continuous Improvement

12.1 Tracking Key Metrics

Monitor:

● Vulnerability Density: Vulns per image.

● Mean Time to Remediate (MTTR): How quickly are issues fixed?

● Compliance Score: Percentage of images passing defined policies.

Regular reviews of these metrics guide improvements in tool selection, developer training, and

pipeline configuration [25].

12.2 Iterative Refinement

As the pipeline matures, adjust thresholds, add new scanning tools, or integrate machine learning for

anomaly detection. Continuous improvement ensures long-term resilience and keeps pace with evolving

threats [26].

https://www.ijaidr.com/

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 7

13. Future Directions and Research

Emerging trends include:

● AI-Assisted Prioritization:

○ Automated risk scoring and fixing suggestions using machine learning.

● Cloud-Native Security Standards:

○ Evolving standards like CIS Benchmarks, NIST guidelines tailored for container images.

● Cross-Platform Orchestration:

○ Security scanning extended to edge and serverless deployments.

Research focuses on reducing scan overhead, improving false positive rates, and harmonizing multi-

tenant scanning in large-scale cloud environments [27].

14. Conclusion

Securing containerized environments starts at the image level. By integrating image scanning into CI/CD

pipelines, enforcing vulnerability policies, and continuously monitoring images, organizations can

confidently adopt containers without sacrificing security.

The best practices outlined here from selecting the right tools and policies to managing vulnerabilities and

tackling supply chain threats equip teams to maintain a robust container security posture. With disciplined

execution, automated scans, and a culture of accountability, organizations can transform container security

from a defensive afterthought into a proactive, integral part of the DevSecOps workflow.

References

1. D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,” IEEE Cloud Computing,

vol. 1, no. 3, pp. 81–84, 2014.

2. A. Collins et al., “Securing the Software Supply Chain,” NIST Workshop, 2021.

3. J. Allspaw, P. Hammond, “10+ Deploys per Day: Dev and Ops Cooperation at Flickr,” Velocity

Conference, 2009.

4. S. Newman, Building Microservices, O’Reilly Media, 2015.

5. CIS Docker Benchmark, https://www.cisecurity.org/benchmark/docker, Accessed 2022.

6. T. Wüest, “The Challenges of Container Security,” IEEE Security & Privacy, 2020.

7. GitLab Documentation, “Integrating Security Scans in CI,” https://docs.gitlab.com, Accessed 2022.

8. Jenkins Pipeline Documentation, https://www.jenkins.io/doc/book/pipeline/, Accessed 2022.

9. The NVD, National Vulnerability Database, https://nvd.nist.gov/, Accessed 2022.

10. AWS ECR Image Scanning, https://docs.aws.amazon.com/ecr/, Accessed 2022.

11. Trivy Documentation, https://aquasecurity.github.io/trivy/, Accessed 2022.

12. Clair Documentation, https://quay.github.io/clair/, Accessed 2022.

13. OWASP Top Ten, https://owasp.org/www-project-top-ten/, Accessed 2022.

14. ELK Stack Documentation, https://www.elastic.co/what-is/elk-stack, Accessed 2022.

15. CVSS v3.1 Documentation, https://www.first.org/cvss/, Accessed 2022.

16. M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” LISA Conference, 1999.

17. Notary Documentation, https://docs.docker.com/notary/, Accessed 2022.

18. Sigstore Project, https://sigstore.dev/, Accessed 2022.

19. Gitleaks Documentation, https://github.com/gitleaks/gitleaks, Accessed 2022.

https://www.ijaidr.com/
https://www.cisecurity.org/benchmark/docker
https://docs.gitlab.com/
https://www.jenkins.io/doc/book/pipeline/
https://nvd.nist.gov/
https://docs.aws.amazon.com/ecr/
https://aquasecurity.github.io/trivy/
https://quay.github.io/clair/
https://owasp.org/www-project-top-ten/
https://www.elastic.co/what-is/elk-stack
https://www.first.org/cvss/
https://docs.docker.com/notary/
https://sigstore.dev/
https://github.com/gitleaks/gitleaks

Journal of Advances in Developmental Research (IJAIDR)

E-ISSN: 0976-4844 ● Website: www.ijaidr.com ● Email: editor@ijaidr.com

IJAIDR23011161 Volume 14, Issue 1, January-June 2023 8

20. OWASP DevSecOps Maturity Model, https://owasp.org/www-project-devsecops-maturity-model/,

Accessed 2022.

21. Falco Documentation, https://falco.org/, Accessed 2022.

22. S. Kim, “Revisiting CVE Management in Cloud-Native Environments,” IEEE Cloud Computing, vol.

8, no. 2, pp. 70–75, 2021.

23. Veracode State of Software Security Report, https://www.veracode.com/, Accessed 2022.

24. Snyk State of Open Source Security, https://snyk.io, Accessed 2022.

25. PCI-DSS v3.2.1, https://www.pcisecuritystandards.org/, Accessed 2022.

26. NIST Container Security Guidelines, https://www.nist.gov/, Accessed 2022.

27. M. Kleppmann, Designing Data-Intensive Applications, O’Reilly Media, 2017.

https://www.ijaidr.com/
https://owasp.org/www-project-devsecops-maturity-model/
https://falco.org/
https://www.veracode.com/
https://snyk.io/
https://www.pcisecuritystandards.org/
https://www.nist.gov/

