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Abstract: 

Modern data architectures have become increasingly complex, creating new challenges in ensuring data 

quality and reliability. This paper explores the emerging field of data observability and quality 

automation frameworks that enable organizations to build self-healing data pipelines. We present a 

comprehensive analysis of current challenges in data quality management, examine the evolution of 

observability practices from DevOps to DataOps, and propose a reference architecture for 

implementing intelligent data quality systems. Through case studies and empirical evidence, we 

demonstrate how organizations can significantly reduce data downtime, accelerate issue resolution, and 

build greater trust in their data assets through automated detection, diagnosis, and remediation 

capabilities. The paper concludes with a roadmap for future developments in self-healing data systems 

and guidelines for implementation across various organizational contexts. 
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I. INTRODUCTION 

Data has become the lifeblood of modern organizations, powering everything from operational decision-

making to strategic planning and artificial intelligence initiatives. As data volumes grow exponentially and 

data architectures become increasingly complex, ensuring data quality and reliability has emerged as one of 

the most critical challenges facing data teams today [1]. Research by Gartner indicates that poor data quality 

costs organizations an average of $12.9 million annually, with impacts ranging from lost revenue to missed 

opportunities and diminished trust in data-driven decision-making [2]. 

Traditional approaches to data quality management—characterized by manual checks, reactive 

troubleshooting, and siloed responsibilities—have proven inadequate in modern data environments. As 

organizations adopt cloud-native architectures, microservices, and real-time data processing, the points of 

potential failure multiply while visibility into data pipelines decreases. This complexity has given rise to a 

new paradigm: data observability and automated quality management systems that can detect, diagnose, and 

even remediate issues with minimal human intervention. 

This paper explores the emerging field of self-healing data pipelines, defined as data workflows that can 

autonomously monitor their own health, identify quality issues, determine root causes, and implement 

corrective actions. We examine the technological foundations, architectural patterns, and organizational 

practices that enable truly resilient data systems. Drawing on real-world implementations and research, we 

provide a blueprint for organizations seeking to move from reactive data firefighting to proactive data quality 

automation. 

The remainder of this paper is organized as follows: Section II examines the current state of data quality 

challenges and the limitations of traditional approaches. Section III introduces the concept of data 

observability and its relationship to broader observability practices. Section IV presents a reference 

architecture for self-healing data pipelines. Section V explores implementation strategies and case studies. 
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Section VI discusses future directions and emerging technologies. Section VII provides concluding thoughts 

and practical recommendations. 

 

II. THE DATA QUALITY CRISIS: UNDERSTANDING THE CHALLENGE 
 

A. The Evolving Data Landscape 

The data landscape has undergone a profound transformation over the past decade. Organizations have 

migrated from monolithic data warehouses to distributed architectures comprising data lakes, cloud-native 

services, and specialized processing engines. According to a survey by Dimensional Research, 92% of data 

engineers report that their data environments have become more complex in the past year [3]. This complexity 

manifests in several ways: 

• Volume and Velocity: IDC projects that the global datasphere will grow from 64.2 zettabytes in 2020 to 180 

zettabytes by 2025 [4]. This explosive growth is accompanied by increasing velocity, with more data being 

processed in real-time streams. 

• Variety and Heterogeneity: Organizations routinely integrate data from dozens or hundreds of sources in 

different formats, structures, and levels of quality. Each integration point represents a potential failure point. 

• Distributed Ownership: As data democratization efforts progress, responsibility for data creation, 

transformation, and consumption is distributed across the organization, complicating governance and 

accountability. 

• Technological Diversity: Modern data stacks comprise numerous specialized tools and platforms—ETL 

tools, data catalogs, transformation frameworks, and analytics platforms—each with its own interfaces, 

semantics, and failure modes. 

This evolving landscape has created what some practitioners call the "data quality gap"—the growing distance 

between the complexity of data systems and our ability to ensure their reliability. 

 

B. The Consequences of Poor Data Quality 

The consequences of data quality issues extend far beyond technical inconvenience. Research by MIT Sloan 

indicates that knowledge workers waste up to 50% of their time dealing with mundane data quality issues and 

searching for reliable information [5]. These impacts can be categorized into several dimensions: 

• Financial Impact: Beyond the direct costs of remediation, poor data quality leads to missed opportunities, 

regulatory fines, and inefficient operations. A study by IBM estimated that poor data quality costs the US 

economy over $3.1 trillion annually [6]. 

• Decision Risk: As organizations become more data-driven, the risk of making strategic decisions based on 

faulty data increases. This risk is particularly acute in domains like financial services, healthcare, and critical 

infrastructure. 

• Trust Erosion: When data consumers encounter quality issues, they develop what some researchers call 

"data skepticism"—a tendency to question or even ignore data-driven insights, undermining the very culture 

organizations seek to build. 

• Operational Disruption: Data pipeline failures can cascade through dependent systems, causing outages in 

critical business applications, delaying analytical insights, and consuming disproportionate engineering 

resources. 

These consequences are intensified by what has been termed "data downtime"—periods when data is missing, 

inaccurate, or otherwise unfit for intended uses. According to Monte Carlo Data, organizations experience an 

average of 61 data incidents per month, with each incident taking an average of 13 hours to identify and 

resolve [7]. 

 

C. Limitations of Traditional Approaches 

Traditional approaches to data quality management have centered around three main strategies, each with 

significant limitations in modern data environments: 
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• Manual Testing and Validation: Many organizations rely on manual data quality checks performed by 

analysts or engineers. This approach fails to scale with data volume and velocity, covers only a fraction of 

potential issues, and shifts valuable human resources away from higher-value work. 

• Rule-Based Checks: Static, rule-based validations (e.g., checking for nulls, duplicates, or out-of-range 

values) address only known failure modes and require constant maintenance as data schemas and semantics 

evolve. They also struggle with complex, cross-system dependencies. 

• Post-hoc Cleanup: Reactive approaches that focus on cleaning data after issues have occurred fail to address 

root causes and create endless remediation cycles. They also typically occur too late to prevent downstream 

impacts. 

These approaches share a fundamental limitation: they treat data quality as a static property rather than a 

dynamic system characteristic that requires continuous monitoring and adaptation. They also tend to focus on 

surface-level symptoms rather than underlying causes, leading to what some practitioners call "data quality 

whack-a-mole"—a never-ending cycle of fixing the same issues in different contexts. 

 

III. DATA OBSERVABILITY: FROM MONITORING TO UNDERSTANDING 

 

A.  The Observability Paradigm 

The concept of observability has its roots in control theory, where it refers to the ability to infer the internal 

state of a system based on its external outputs. In software engineering, observability emerged as an evolution 

of monitoring, moving beyond simple metrics to provide deeper insights into system behavior through the 

collection and analysis of logs, traces, and other telemetry data. 

Data observability extends this paradigm to data pipelines and assets, providing visibility into the health, 

performance, and quality of data at each stage of its lifecycle. While monitoring answers the question "What 

is happening?", observability answers "Why is it happening?" This distinction is critical for building truly 

resilient data systems. 

The five pillars of data observability, as articulated by Barr Moses and others [8], provide a framework for 

understanding this emerging discipline: 

1) Freshness: Is data being updated at the expected cadence? Are there delays in processing or availability? 

 

2) Distribution: Are the statistical properties of data (means, medians, cardinality, etc.) within expected 

ranges? Are there anomalies in the distribution that might indicate quality issues? 

 

3) Volume: Is the amount of data being processed, stored, or queried within expected boundaries? Are there 

unexpected spikes or drops? 
 

4) Schema: Are the structure, fields, and types of data consistent with expectations? Have there been 

unplanned or undocumented schema changes? 

 

5) Lineage: How does data flow through systems? What are the dependencies between datasets, 

transformations, and consuming applications? 
 

Together, these pillars enable data teams to build a comprehensive understanding of their data systems, 

identify potential issues before they impact downstream consumers, and trace problems to their root causes. 

 

B.  From DevOps to DataOps 

The emergence of data observability parallels the broader evolution from DevOps to DataOps—the 

application of DevOps principles and practices to data engineering and analytics. This evolution recognizes 

the unique characteristics of data workflows compared to traditional software development: 

• State Dependency: Unlike stateless applications, data pipelines operate on and transform state. A single 

corruption can propagate through the entire system. 
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• Semantic Complexity: Understanding data requires domain knowledge beyond pure engineering expertise. 

• Asynchronous Feedback: Issues in data pipelines may not manifest until long after they occur, making 

immediate feedback loops challenging. 

DataOps practices emphasize continuous testing, monitoring, and improvement of data pipelines, creating a 

foundation for observability. However, true observability requires moving beyond process to implement 

technological solutions that provide the necessary visibility. 

 

C. Building Observable Data Systems 

Implementing data observability requires a combination of architectural patterns, tooling, and organizational 

practices. Key elements include: 

• Instrumentation: Adding metadata and telemetry collection points throughout data pipelines to capture 

operational metrics, data profiles, and quality indicators. 

• Centralized Observability Layer: Creating a unified platform for collecting, storing, and analyzing 

observability data across the entire data ecosystem. 

• Semantic Layer: Mapping technical metadata to business concepts to enable meaningful interpretation of 

quality metrics. 

• Anomaly Detection: Implementing statistical and machine learning techniques to identify deviations from 

expected behavior without relying solely on predefined thresholds. 

Organizations leading in this space, such as Spotify with its "Data Health System" and Netflix with its "Data 

Validation Framework," have demonstrated the value of investing in observability [9]. These companies 

report significant reductions in data incidents, faster time to resolution, and improved data team productivity. 

However, observability alone addresses only part of the challenge. To build truly resilient systems, 

organizations must move from observation to automated action—the domain of self-healing data pipelines. 

 

IV. REFERENCE ARCHITECTURE FOR SELF-HEALING DATA PIPELINES 

 

 
Fig1. Reference Architecture for Self-Healing Data Pipelines 

 

A. Conceptual Framework 

Self-healing data pipelines represent the convergence of data observability, quality automation, and intelligent 

remediation. The core principle is to create closed-loop systems that can detect, diagnose, and correct issues 

with minimal human intervention. This approach draws inspiration from concepts in control systems, site 

reliability engineering, and autonomous computing. 

At a conceptual level, self-healing data pipelines incorporate four fundamental capabilities: 

1) Continuous Monitoring: Real-time collection of metrics, profiles, and quality indicators across all data 

assets and pipeline components. 
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2) Intelligent Detection: Identification of anomalies, deviations, and potential issues through statistical 

analysis, machine learning, and domain-specific rules. 

 

3) Automated Diagnosis: Determination of root causes through correlation analysis, impact assessment, 

and causal inference. 
 

4) Adaptive Remediation: Implementation of corrective actions ranging from simple fixes (e.g., retrying 

failed jobs) to complex interventions (e.g., dynamically adjusting transformation logic). 

These capabilities form a continuous loop, with each phase feeding into the next and creating a system that 

learns and improves over time. The degree of automation in the remediation phase can vary based on 

organizational risk tolerance, domain complexity, and technical maturity. 

 

B. Architectural Components 

Translating this conceptual framework into a practical architecture requires several key components: 

 

1) Data Quality Service 

The data quality service serves as the central nervous system of the self-healing architecture. It combines: 

• Metadata Repository: A comprehensive catalog of data assets, their schemas, relationships, and 

expected quality characteristics. 

• Rules Engine: A system for defining, managing, and executing data quality rules, both predefined and 

dynamically generated. 

• Profiling Engine: Automated analysis of data characteristics, distributions, and patterns to establish 

baselines and detect anomalies. 

• Anomaly Detection: Machine learning models that identify unexpected deviations from historical 

patterns and expected behaviors. 

Modern implementations often leverage graph databases for metadata management, streaming technologies 

for real-time profiling, and ensemble machine learning approaches for anomaly detection. 

 

2) Observability Plane 

The observability plane collects, stores, and processes telemetry data from across the data ecosystem: 

• Collectors: Agents and connectors that gather metrics, logs, and events from data sources, processing 

engines, and pipeline components. 

• Time Series Database: Optimized storage for high-volume metric data with efficient query 

capabilities. 

• Event Store: Persistent storage for logs, alerts, and significant events with support for complex queries. 

• Correlation Engine: Analysis tools for identifying relationships between events, metrics, and quality 

indicators. 

Leading organizations have found that the volume of observability data often exceeds that of the business data 

itself, requiring specialized infrastructure and retention policies. 

 

3) Remediation Framework 

The remediation framework enables automated response to detected issues: 

• Action Repository: A catalog of predefined remediation actions with their preconditions, effects, and 

implementation details. 

• Decision Engine: Logic for selecting appropriate remediation actions based on issue type, severity, 

and context. 

• Orchestration Layer: Execution environment for implementing remediation actions across distributed 

systems. 

• Feedback Loop: Mechanisms for tracking the effectiveness of remediation actions and refining future 

responses. 
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The sophistication of remediation actions can range from simple "retry logic" to complex interventions 

involving dynamic reconfiguration of pipeline components or even synthesis of corrective transformations. 

 

4) Integration Layer 

The integration layer connects the self-healing system with the broader data ecosystem: 

• API Gateway: Standardized interfaces for interacting with the self-healing system from external tools 

and applications. 

• Notification System: Channels for alerting stakeholders about detected issues, implemented 

remediation, and required human intervention. 

• External Services Connectors: Integration points with related systems such as data catalogs, workflow 

orchestrators, and monitoring platforms. 

This layer enables the self-healing system to function as part of a cohesive data management ecosystem rather 

than an isolated solution. 

 

C. Implementation Patterns 

While the reference architecture provides a blueprint, implementation approaches vary based on 

organizational context, existing infrastructure, and maturity level. Three common patterns have emerged: 

• Embedded Quality: Integrating observability and remediation capabilities directly into data processing 

frameworks. For example, modern frameworks like Apache Spark and dbt include built-in functionality for 

data quality validation and error handling. 

• Sidecar Pattern: Deploying observability and remediation components alongside existing pipeline 

components without modifying them. This pattern is particularly valuable for legacy systems or third-party 

components that cannot be directly modified. 

• Central Platform: Implementing a dedicated data quality platform that connects to all data assets and 

pipelines through standardized interfaces. This approach provides the most comprehensive coverage but 

requires significant investment in integration. 

Organizations often combine these patterns, applying different approaches to different parts of their data 

ecosystem based on criticality, complexity, and technical constraints. 

 

Use the enter key to start a new paragraph. The appropriate spacing and indent are automatically applied. 

 

V. IMPLEMENTATION STRATEGIES AND CASE STUDIES 

 

A. Phased Implementation Approach 

Building self-healing data pipelines represents a significant transformation for most organizations. A phased 

implementation approach helps manage complexity and demonstrate value incrementally: 

 

1) Foundation Phase: Establish basic observability by instrumenting critical data assets and pipelines. 

Focus on collecting metadata, profiling data, and establishing baselines for normal behavior. 

 

2) Detection Phase: Implement anomaly detection and quality validation rules. Begin generating alerts for 

potential issues, even if remediation remains manual. 

 

3) Diagnosis Phase: Develop correlation capabilities to identify root causes and impact assessments for 

detected issues. Implement automated root cause analysis for common failure patterns. 

 

4) Controlled Remediation: Implement automated remediation for low-risk, well-understood issues. 

Establish clear boundaries between automated and human-in-the-loop scenarios. 
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5) Advanced Automation: Gradually expand the scope of automated remediation, incorporating machine 

learning for adaptive responses and handling increasingly complex scenarios. 

This approach allows organizations to build capability and confidence progressively, learning and adjusting 

as they go. It also helps data teams adapt to new workflows and responsibilities. 

 

B. Case Study: Financial Services Firm 

A global financial services firm implemented self-healing data pipelines to address recurring quality issues in 

their customer data integration processes. Their implementation journey illustrates several key success factors: 

 

1) Initial Challenge 

The firm processed data from over 200 source systems, integrating it into a central customer data platform 

that powered regulatory reporting, analytics, and customer-facing applications. They experienced frequent 

quality issues, including: 

• Missing or delayed data from critical sources 

• Schema drift causing transformation failures 

• Duplication and inconsistency across sources 

• Reference data integrity problems 

These issues resulted in approximately 350 hours of data downtime per month, required 12 full-time engineers 

for troubleshooting, and significantly delayed regulatory reporting. 

 

2) Implementation Approach 

The firm adopted a phased approach focused initially on their most critical data domains: 

1. They deployed data observability tools to monitor data freshness, volume, and schema stability across 

all ingestion points. 

2. They implemented anomaly detection for key quality metrics, generating alerts when data deviated 

from expected patterns. 

3. They developed a remediation framework with automated actions for common issues:  

o Automatic retries for failed connections with exponential backoff 

o Dynamic schema adjustment for non-breaking changes 

o Automated deduplication based on configurable business rules 

o Source priority rules for resolving conflicts in overlapping data 

4. They established a feedback loop, tracking the effectiveness of automated remediation and 

continuously refining detection and correction logic. 

 

3) Results 

After 12 months, the firm reported: 

• 82% reduction in data downtime 

• 76% decrease in manual intervention for data quality issues 

• 15-hour improvement in regulatory reporting timeliness 

• Redeployment of 8 engineers from firefighting to strategic initiatives 

 

The team identified three critical success factors: 

1. Starting with a focused scope rather than attempting to implement self-healing across all systems 

simultaneously 

2. Establishing clear thresholds for automated vs. human-in-the-loop remediation 

3. Creating a continuous learning process to refine detection and remediation logic 

 

C.  Case Study: Healthcare Analytics Provider 

A healthcare analytics provider implemented self-healing pipelines to ensure reliability in their clinical data 

processing workflows. Their experience highlights different aspects of the implementation journey: 
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1)  Initial Challenge 

The provider ingested clinical data from hundreds of healthcare organizations, standardized it to common 

formats, and produced analytics models for quality improvement, population health, and clinical research. 

They faced unique challenges: 

• Extreme heterogeneity in source data formats and quality 

• Strict regulatory requirements for data handling and privacy 

• Complex transformation logic requiring clinical domain knowledge 

• High stakes for data accuracy in clinical decision support 

Manual quality management processes were overwhelming their team and creating unacceptable delays in 

data availability. 

 

2) Implementation Approach 

The provider took a domain-centric approach to implementation: 

1. They created a domain-specific quality framework incorporating clinical knowledge, defining 

expected relationships between medical concepts, valid value ranges, and consistency rules. 

2. They implemented a metadata-rich observability layer that tracked not just technical metrics but 

semantic characteristics of the data. 

3. They developed a tiered remediation approach:  

o Tier 1: Fully automated remediation for well-understood technical issues 

o Tier 2: Suggested remediation with human approval for domain-specific issues 

o Tier 3: Alert-only for complex issues requiring clinical expertise 

4. They implemented a learning system that captured expert decisions for Tier 3 issues, gradually 

building a knowledge base that enabled more issues to be handled at Tier 2 or Tier 1. 

 

3) Results 

After 18 months, the provider reported: 

• 94% of technical quality issues resolved automatically 

• 67% of domain-specific issues handled through suggested remediation 

• 3x improvement in time-to-value for new data sources 

• Expanded coverage to 3x more healthcare organizations without increasing quality management staff 

Their key insights included: 

1. The importance of domain-specific quality rules beyond generic data quality dimensions 

2. The value of progressive automation that learns from expert intervention 

3. The need to balance automation with appropriate human oversight in high-stakes domains 

 

VI. FUTURE DIRECTIONS AND EMERGING TECHNOLOGIES 

A. Machine Learning for Adaptive Quality Management 

The next frontier in self-healing data pipelines involves more sophisticated applications of machine learning 

beyond basic anomaly detection: 

• Predictive Quality Management: Using leading indicators to predict potential quality issues before 

they manifest, enabling truly preventative actions. 

• Automatic Rule Generation: Learning quality rules from data rather than requiring explicit definition, 

helping systems adapt to evolving data characteristics. 

• Causal Inference: Moving beyond correlation to establish causal relationships between system events 

and data quality issues, enabling more precise diagnosis. 

• Semantic Understanding: Developing models that understand the business meaning of data, enabling 

quality assessment based on fitness for specific use cases rather than generic technical criteria. 

Research in these areas is advancing rapidly, with organizations like MIT's Data Systems and AI Lab (DSAIL) 

and companies like Anomalo and Monte Carlo leading innovation [10]. 

https://www.ijaidr.com/


 

Journal of Advances in Developmental Research (IJAIDR) 
E-ISSN: 0976-4844   ●   Website: www.ijaidr.com   ●   Email: editor@ijaidr.com 

 

IJAIDR23011299 Volume 14, Issue 1, January-June 2023 9 

 

B. Federated Data Quality 

As data ecosystems become increasingly distributed—spanning multiple clouds, on-premises systems, and 

edge environments—a new approach to data quality is emerging: federated data quality management. This 

approach: 

• Distributes quality verification and enforcement to where data resides 

• Establishes consistent quality standards across heterogeneous environments 

• Aggregates quality signals across the distributed landscape 

• Enables coordinated remediation across system boundaries 

Early implementations of federated approaches show promise in complex, multi-cloud environments where 

centralized quality management would create unacceptable latency or governance challenges. 

 

C. Quality-Native Data Systems 

Looking further ahead, we anticipate the emergence of "quality-native" data systems—platforms that treat 

quality as a first-class concern rather than an afterthought. These systems will: 

• Embed quality verification into core data operations 

• Provide "quality guarantees" similar to the consistency guarantees in distributed databases 

• Automatically adjust processing based on quality characteristics 

• Support quality-based routing and prioritization of data flows 

Just as "cloud-native" technologies reimagined applications for distributed environments, quality-native 

systems will fundamentally rethink data processing around the central importance of quality and reliability. 

 

VII.  CONCLUSION AND RECOMMENDATIONS 

 

A. The Path to Data Reliability 

Data observability and self-healing pipelines represent a fundamental shift in how organizations manage data 

quality—from reactive remediation to proactive prevention, from manual intervention to intelligent 

automation. This shift is not merely technical but organizational, requiring new skills, processes, and 

mindsets. 

The journey toward self-healing data pipelines is, in many ways, a journey toward what some have called 

"Data Reliability Engineering" (DRE)—the application of site reliability engineering principles to data 

systems [11]. Just as SRE transformed application management, DRE promises to transform data management 

by establishing clear reliability objectives, implementing automated solutions, and continuously improving 

both systems and processes. 

 

B. Key Recommendations 

Based on the research and case studies presented in this paper, we offer several recommendations for 

organizations embarking on this journey: 

1) Start with Observability: Build comprehensive visibility into your data ecosystem before attempting 

automated remediation. You cannot fix what you cannot see. 
 

2) Adopt Domain-Driven Quality: Define quality not just in technical terms but in relation to business 

domains and use cases. The same data may have different quality requirements depending on how it's used. 

 

3) Embrace Progressive Automation: Begin with alert-only systems, then graduate to suggested 

remediation, and finally to fully automated healing where appropriate. Build confidence in your automation 

incrementally. 

 

4) Invest in Metadata: Rich, accurate, and comprehensive metadata is the foundation for effective 

observability and remediation. Prioritize tools and processes that capture and maintain high-quality metadata. 
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5) Balance Technical and Organizational Change: Implementing self-healing pipelines requires both 

technological solutions and new organizational practices. Invest in both dimensions equally. 

 

6) Measure Impact Holistically: Evaluate success not just through technical metrics like downtime 

reduction but through business impacts like improved decision-making, accelerated insights, and enhanced 

trust in data. 

 

The organizations that successfully implement these recommendations will not only reduce costs and improve 

efficiency but also unlock new possibilities for data-driven innovation. By ensuring that data is consistently 

reliable, timely, and accurate, they create the foundation for advanced analytics, machine learning, and 

artificial intelligence initiatives that depend on high-quality data. 

As data continues to grow in volume, velocity, and importance, the ability to automatically ensure its quality 

and reliability will become not just a competitive advantage but a fundamental requirement for organizational 

success. The path to self-healing data pipelines represents one of the most important journeys that data-driven 

organizations can undertake. 
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